»ó¼¼Á¤º¸
¹Ì·¡¸¦ ¹Ù²Ù´Â AI ±â¼ú ³ëÆ®
- ÀúÀÚ
- ³ë¼º¹®
- ÃâÆÇ»ç
- ÇضóºûÃâÆÇ»ç
- ÃâÆÇÀÏ
- 2025-02-11
- µî·ÏÀÏ
- 2025-04-01
- ÆÄÀÏÆ÷¸Ë
- PDF
- ÆÄÀÏÅ©±â
- 40MB
- °ø±Þ»ç
- ±³º¸¹®°í
- Áö¿ø±â±â
-
PC
PHONE
TABLET
ÇÁ·Î±×·¥ ¼öµ¿¼³Ä¡
ºä¾îÇÁ·Î±×·¥ ¼³Ä¡ ¾È³»
Ã¥¼Ò°³
"ÀΰøÁö´ÉÀÌ ´õ ÀÌ»ó ¹Ì·¡ÀÇ ±â¼úÀÌ ¾Æ´Ï¶ó´Â »ç½ÇÀ» ü°¨ÇÏ´Â ºÐµéÀÌ ¸¹¾ÆÁ³½À´Ï´Ù.
½º¸¶Æ® ½ºÇÇÄ¿·Î ÇϷ縦 ¿°í, °³ÀÎÈµÈ ¾Ë°í¸®Áò ÃßõÀ¸·Î ÃëÇâÀ» ã¾Æ°¡¸ç, 꺿°ú ÀÚÀ¯·Ó°Ô ´ëÈÇÏ´Â ÀÏ»óÀÌ ÀÌÁ¦´Â ³¸¼³Áö ¾Ê½À´Ï´Ù.
ÇÏÁö¸¸ ÀÌ·± È帧 ¼Ó¿¡¼µµ ¡°AI¡±¶ó´Â ´Ü¾î°¡ ¸·¿¬ÇÏ°Ô ´À²¸Áö°Å³ª, ±× Àǹ̸¦ Á¤È®È÷ ¸ô¶ó ´ëȸ¦ À̾Áö ¸øÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù.
ÀÌ Ã¥Àº ¹Ù·Î ±×·± ¡®³¸¼´¡¯À» ÇؼÒÇÏ°í, ´©±¸³ª AIÀÇ ±âÃÊ °³³äÀ» Ä£¼÷ÇÏ°Ô ÀÍÈú ¼ö ÀÖµµ·Ï µ½±â À§ÇØ ±âȹµÇ¾ú½À´Ï´Ù."
ÀúÀÚ¼Ò°³
"Æò¹üÇÑ Á÷ÀåÀÎÀ¸·Î »çȸ»ýÈ°À» ½ÃÀÛÇßÁö¸¸, ¾÷¹« Àü¹Ý¿¡¼ ÀΰøÁö´É È°¿ëµµ°¡ ±Þ°ÝÈ÷ ³ô¾ÆÁö´Â °ÍÀ» Á÷Á¢ ü°¨ÇÏ°Ô µÇ¾ú½À´Ï´Ù.
ȸ°è, ¸¶ÄÉÆÃ, °í°´ »ó´ã µî ´Ù¾çÇÑ ºÐ¾ß¿¡ AI°¡ Á¢¸ñµÇ¸é¼, ±× Á߿伺°ú Æı޷ÂÀÌ ´õ¿í Ä¿Áø´Ù´Â »ç½ÇÀ» ±ú´Þ¾Ò½À´Ï´Ù.
ÀÌ·¯ÇÑ È帧¿¡ ¹ß¸ÂÃß¾î, ÃʽÉÀÚ¶óµµ ½±°Ô AI ¼¼°è¿¡ µé¾î¼³ ¼ö ÀÖµµ·Ï ¿ë¾îÁý ÇüÅÂÀÇ ÀüÀÚÃ¥À» ±¸»óÇÏ°Ô µÇ¾ú½À´Ï´Ù.
¹Ì·¡¸¦ ¼±µµÇÒ ÇÙ½É »ê¾÷ÀÎ AI¸¦ Á¶±ÝÀÌ¶óµµ ´õ Ä£±ÙÇÏ°Ô ¼Ò°³ÇÏ´Â °ÍÀÌ ¸ñÇ¥ÀÔ´Ï´Ù."
¸ñÂ÷
"ÇÁ·Ñ·Î±×
¸ñÂ÷
Accuracy (Á¤È®µµ)
Activation Function (È°¼ºÈ ÇÔ¼ö)
Algorithm (¾Ë°í¸®Áò)
Artificial Intelligence (AI, ÀΰøÁö´É)
Backpropagation (¿ªÀüÆÄ)
Bias (¹ÙÀ̾)
Big Data (ºòµ¥ÀÌÅÍ)
Chatbot (꺿)
Classification (ºÐ·ù)
Clustering (±ºÁýÈ)
Computer Vision (ÄÄÇ»ÅÍ ºñÀü)
Convolutional Neural Network (CNN, ÇÕ¼º°ö ½Å°æ¸Á)
Data (µ¥ÀÌÅÍ)
Dataset (µ¥ÀÌÅͼÂ)
Decision Tree (ÀÇ»ç°áÁ¤³ª¹«)
Deep Learning (µö·¯´×)
Epoch (¿¡Æø)
Feature (Ư¡)
Feedforward Network (¼ø¹æÇ⠽Űæ¸Á)
Gradient Descent (°æ»çÇÏ°¹ý)
GPU (Graphics Processing Unit)
Hyperparameter (ÇÏÀÌÆÛÆĶó¹ÌÅÍ)
Input Layer (ÀÔ·ÂÃþ)
Label (·¹À̺í)
Learning Rate (ÇнÀ·ü)
Loss Function (¼Õ½ÇÇÔ¼ö)
Machine Learning (¸Ó½Å·¯´×)
Mini-Batch (¹Ì´Ï¹èÄ¡)
Momentum (¸ð¸àÅÒ)
Natural Language Processing (NLP, ÀÚ¿¬¾îó¸®)
Neural Network (½Å°æ¸Á)
One-Hot Encoding (¿ø-ÇÖ ÀÎÄÚµù)
Optimizer (¿ÉƼ¸¶ÀÌÀú)
Output Layer (Ãâ·ÂÃþ)
Overfitting (°úÀûÇÕ)
Parameter (ÆĶó¹ÌÅÍ)
Predict (¿¹Ãø)
Preprocessing (Àüó¸®)
Precision (Á¤¹Ðµµ)
Recall (ÀçÇöÀ²)
Regression (ȸ±Í)
Reinforcement Learning (°ÈÇнÀ)
Supervised Learning (ÁöµµÇнÀ)
Test Set (Å×½ºÆ®¼Â)
Tokenization (ÅäÅ©³ªÀÌ¡)
Training Set (ÇнÀ¼Â)
Underfitting (°ú¼ÒÀûÇÕ)
Validation Set (°ËÁõ¼Â)
Weight (°¡ÁßÄ¡)
Autoencoder (¿ÀÅäÀÎÄÚ´õ)
Batch Normalization (¹èÄ¡ Á¤±ÔÈ)
Bayesian Network (º£ÀÌÁö¾È ³×Æ®¿öÅ©)
Beam Search (ºö ¼Ä¡)
Boosting (ºÎ½ºÆÃ)
Capsule Network (ĸ½¶ ³×Æ®¿öÅ©)
Collaborative Filtering (Çù¾÷ ÇÊÅ͸µ)
Confusion Matrix (È¥µ¿ Çà·Ä)
Cross Entropy (±³Â÷ ¿£Æ®·ÎÇÇ)
Curse of Dimensionality (Â÷¿øÀÇ ÀúÁÖ)
Data Augmentation (µ¥ÀÌÅÍ Áõ°)
Dropout (µå·Ó¾Æ¿ô)
Early Stopping (Á¶±â Á¾·á)
Embedding (ÀÓº£µù)
Ensemble Learning (¾Ó»óºí ÇнÀ)
F1 Score (F1 ½ºÄÚ¾î)
Feature Extraction (Ư¡ ÃßÃâ)
Fine-Tuning (ÆÄÀÎÆ©´×)
Fourier Transform (Ǫ¸®¿¡ º¯È¯)
Gaussian Mixture Model (GMM, °¡¿ì½Ã¾È È¥ÇÕ ¸ðµ¨)
Generative Model (»ý¼º ¸ðµ¨)
Gradient Clipping (±×¶óµð¾ðÆ® Ŭ¸®ÇÎ)
Grid Search (±×¸®µå ¼Ä¡)
Gated Recurrent Unit (GRU)
He Initialization (He ÃʱâÈ)
Label Smoothing (·¹ÀÌºí ½º¹«µù)
Learning Curve (ÇнÀ °î¼±)
Leaky ReLU (¸®Å° ·¼·ç)
L1/L2 Regularization (L1/L2 Á¤±ÔÈ)
Mini-Batch Gradient Descent (¹Ì´Ï¹èÄ¡ °æ»çÇÏ°¹ý)
N-Gram (¿£±×·¥)
One Cycle Policy (¿ø »çÀÌŬ Á¤Ã¥)
Online Learning (¿Â¶óÀÎ ÇнÀ)
Pearson Correlation (ÇǾ »ó°ü°è¼ö)
Perceptron (ÆÛ¼ÁÆ®·Ð)
Principal Component Analysis (PCA, ÁÖ¼ººÐ ºÐ¼®)
Q-Learning (Q ·¯´×)
Receiver Operating Characteristic Curve (ROC °î¼±)
ReLU (Rectified Linear Unit)
Residual Network (ResNet)
Sensitivity/Specificity (¹Î°¨µµ/ƯÀ̵µ)
Sigmoid Function (½Ã±×¸ðÀ̵å ÇÔ¼ö)
Softmax Function (¼ÒÇÁÆ®¸Æ½º ÇÔ¼ö)
Stemming (¾î°£ ÃßÃâ)
Stop Words (ºÒ¿ë¾î)
Synthetic Minority Over-sampling Technique (SMOTE)
Tensor (ÅÙ¼)
Transfer Learning (ÀüÀÌÇнÀ)
Xavier Initialization (ÀÚºñ¿¡ ÃʱâÈ)
Word Embedding (¿öµå ÀÓº£µù)
Actor-Critic Method (¾×ÅÍ-Å©¸®Æ½ ¹æ¹ý)
ÀúÀÚ¼Ò°³
¿¡Çʷα×"